ElevenLabs Tutorial: Create stories with Voice AI from ElevenLabs

Wednesday, July 12, 2023 by abdibrokhim
ElevenLabs Tutorial: Create stories with Voice AI from ElevenLabs

Introduction

ElevenLabs is voice technology research company, developing the most compelling AI speech software for publishers and creators.

ChatGPT is an AI-based chatbot developed by OpenAI. It is powered by the GPT-3.5 architecture, which stands for "Generative Pre-trained Transformer 3.5." GPT-3.5 is an advanced language model that has been trained on a massive amount of text data from the internet and other sources. Check out ChatGPT apps to get inspired by what you can use it for.

React is a JavaScript library for building user interfaces.

Material-UI a comprehensive collection of prebuilt components that are ready for use in production right out of the box.

FastAPI is a modern, fast (high-performance), web framework for building APIs.

What are we going to build?

In this tutorial, we will build a React app to generate brand new stories and add add voiceover to listen to story. Sit back, relax, enjoy the tutorial and don't forget to make a cup of coffee β˜•οΈ.

Learning outcomes

  • Getting familiar with ElevenLabs.
  • Getting familiar with OpenAI's ChatGPT-3.5-turbo (LLM).
  • Creating React app from scratch.
  • Getting familiar Material UI.

Prerequisites

Go to Visual Studio Code and donwload version, that compatible with your operating system, or use any other code editor like: IntelliJ IDEA, PyCharm, etc.

To use ElevenLabs, we need API key. Go to ElevenLabs and create an account. It's free! πŸŽ‰. And in the upper right corner click on your profile picture > profile. Next click on the eye icon and copy/save your API key.

To use OpenAI's ChatGPT-3.5-turbo, we need API key. Go to OpenAI and create an account. It's free! πŸŽ‰. And in the upper right corner click on your profile picture > View API Keys. Next click on the Create new secret key and copy/save your API key.

Nothing more! Just a cup of coffee β˜•οΈ and a laptop πŸ’».

Getting started

Create a new project

First thing first, open Visual Studio Code and create a new folder named elevenlabs-tutorial:

mkdir elevenlabs-tutorial
cd elevenlabs-tutorial

Backend

Create a folder for backend

Let's create new folder for backend. Open your terminal and run the following commands:

mkdir backend
cd backend

Create a new python file

Now, we need to create a new python file. Open your terminal and run the following commands:

touch api.py

Create a virtual environment and activate it

Next, we need to create python virtual environment and activate it. Open your terminal and run the following commands:

python3 -m venv venv

# on MacOS and Linux:
source venv/bin/activate

# on Windows:
venv\Scripts\activate

Install all dependencies

Now, we need to install all dependencies. Open your terminal and run the following commands:

pip install fastapi
pip install elevenlabs
pip install openai

Import all dependencies

Next, we need to import all dependencies. Go to api.py and add the following code:

from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import cohere
from elevenlabs import generate, set_api_key
import openai

Initialize FastAPI and add CORS middleware. Learn more about CORS middleware.

app = FastAPI()

origins = ['http://localhost:3000/']  # put your frontend url here

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

Add global variables.

AUDIOS_PATH = "frontend/src/audios/"
AUDIO_PATH = "/audios/"

Implement the API endpoints for voice generation.

@app.get("/voice/{query}")
async def voice_over(query: str):
    set_api_key("your-api-key")  # put your API key here

    audio_path = f'{AUDIOS_PATH}{query[:4]}.mp3'
    file_path = f'{AUDIO_PATH}{query[:4]}.mp3'

    audio = generate(
        text=query,
        voice='Bella',  # premade voice
        model="eleven_monolingual_v1"
    )

    try:
        with open(audio_path, 'wb') as f:
            f.write(audio)

        return file_path

    except Exception as e:
        print(e)

        return ""

Implement the API endpoints for story generation.

@app.get("/chat/chatgpt/{query}")
def chat_chatgpt(query: str):
    openai.api_key = "your-api-key"  # put your API key here

    try:
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "user", "content": query}
            ]
        )

        return response['choices'][0]['message']['content']

    except Exception as e:
        print(e)

        return ""

Run the backend

uvicorn api:app --reload

Now, open your browser and go to http://localhost:8000/docs. You should see the following:

FastAPI dashboard
FastAPI dashboard

Try to play with the API and check it out whether everything we implemented correctly. For example, click on dropdown > Try it out:

FastAPI voice
FastAPI voice
FastAPI story
FastAPI story

Frontend

Create a new React app

Now, we need to create a new React app. Open your terminal and run the following commands:

npx create-react-app frontend
cd frontend

Install all dependencies

Now, we need to install all dependencies. Open your terminal and run the following commands:

npm install @mui/material @emotion/react @emotion/styled @mui/joy @mui/icons-material
npm install use-sound

Implement the UI

Go to src/App.js and replace the code with the following:

import React, { useState } from 'react';
import Textarea from '@mui/joy/Textarea';
import Button from '@mui/joy/Button';
import Box from '@mui/joy/Box';
import { Send, HeadphonesOutlined } from '@mui/icons-material/';
import useSound from 'use-sound';
// import s from './audios/hell.mp3';
import Typography from '@mui/material/Typography';

function App() {
  const [loading, setLoading] = useState(false);
  const [story, setStory] = useState('');
  const [query, setQuery] = useState('');
  const [audio, setAudio] = useState('');
  const [play] = useSound(audio);


  const handleQueryChange = (e) => {
    setQuery(e.target.value);
  }

  const generateStory = () => {
    setLoading(true);
    console.log('story about: ', query);

    fetch(`http://127.0.0.1:8000/chat/chatgpt/${query}`, {
      method: 'GET',  
      headers: {
          'Accept': 'application/json'
        }
      })
      .then(response => {
        if (response.ok) {
          return response.json();
        } else {
          throw new Error('Request failed');
        }
      })
      .then(data => {
        console.log('story: ', data);
        if (data) {
          setStory(data);
        }
      })
      .catch(err => {
          console.log(err);
      });

    setLoading(false);
  }

  const generateAudio = () => {
    setLoading(true);
    console.log('audio about: ', story);

    fetch(`http://127.0.0.1:8000/voice/${story}`, {
      method: 'GET',  
      headers: {
          'Accept': 'application/json'
        }
      })
      .then(response => {
        if (response.ok) {
          return response.json();
        } else {
          throw new Error('Request failed');
        }
      })
      .then(data => {
        console.log('audio path: ', data);
        if (data) {
          setAudio(data);
        }
      })
      .catch(err => {
          console.log(err);
      });

    setLoading(false);

  }


  const handleSubmit = (e) => {

    e.preventDefault();
    generateStory();

  }


  return (
    <Box sx={{ marginTop: '32px', marginBottom: '32px', display: 'flex', flexWrap: 'wrap', flexDirection: 'column', alignItems: 'center', justifyContent: 'center', textAlign: 'center', minHeight: '100vh'}}>
      <Typography variant="h5" component="h5">
        ElevenLabs Tutorial: Create stories with Voice AI from ElevenLabs
      </Typography>
        <Box sx={{ marginTop: '32px', width: '600px' }}>
          <form
              onSubmit={handleSubmit}>
              <Textarea 
                sx={{ width: '100%' }}
                onChange={handleQueryChange}
                minRows={2} 
                maxRows={4} 
                placeholder="Type anything…" />
              <Button 
                disabled={loading || query === ''}
                type='submit'
                sx={{ marginTop: '16px' }}
                loading={loading}>
                  <Send />
              </Button>
          </form>
        </Box>
        {story && (
          <Box sx={{ marginTop: '32px', width: '600px' }}>
            <Textarea 
              sx={{ width: '100%' }}
              value={story}/>
              <Button
                loading={loading}
                sx={{ marginTop: '16px' }}
                onClick={audio ? play : generateAudio}>
                <HeadphonesOutlined />
              </Button>
          </Box>
        )}
    </Box>
  );
}

export default App;

Let's go through the code above. First, we import all the necessary components from @mui/material and @mui/icons-material. Then, we import useSound from use-sound to play the generated audio. Next, we define the App component. Inside the App component, we define the states to store the story, query, and audio. Next, we implemented functions: handleQueryChange, generateStory, generateAudio, and handleSubmit.

handleQueryChange will be called when the user types in the text area. It will update the query state with the value from the text area.

const handleQueryChange = (e) => {
    setQuery(e.target.value);
  }

handleSubmit will be called when the user clicks on the Send icon. It will call the generateStory function. then sends a GET request to the FastAPI chat/chatgpt endpoint to generate an story based on entered query. Then, it will update the story state with the generated story.

const handleSubmit = (e) => {

    e.preventDefault();
    generateStory();

  }

  const generateStory = () => {
    setLoading(true);
    console.log('story about: ', query);

    fetch(`http://127.0.0.1:8000/chat/chatgpt/${query}`, {
      method: 'GET',  
      headers: {
          'Accept': 'application/json'
        }
      })
      .then(response => {
        if (response.ok) {
          return response.json();
        } else {
          throw new Error('Request failed');
        }
      })
      .then(data => {
        console.log('story: ', data); // output story in the console
        if (data) {
          setStory(data);
        }
      })
      .catch(err => {
          console.log(err);
      });

    setLoading(false);
  }

generateAudio will be called when the user clicks on the HeadphonesOutlined icon. It will send a GET request to the FastAPI voice/ endpoint to generate an audio. Then, it will update the audio state with the generated audio path.

const generateAudio = () => {
    setLoading(true);
    console.log('audio about: ', story);

    fetch(`http://127.0.0.1:8000/voice/${story}`, {
      method: 'GET',  
      headers: {
          'Accept': 'application/json'
        }
      })
      .then(response => {
        if (response.ok) {
          return response.json();
        } else {
          throw new Error('Request failed');
        }
      })
      .then(data => {
        console.log('audio path: ', data);
        if (data) {
          setAudio(data);
        }
      })
      .catch(err => {
          console.log(err);
      });

    setLoading(false);

  }

The return statement will render the UI. Here you can see components like: Box, Typography, Textarea, Button, Send and HeadphonesOutlined all of them are buil-in components from Material-UI. Learn more about Material-UI components here.

return (
    <Box sx={{ marginTop: '32px', marginBottom: '32px', display: 'flex', flexWrap: 'wrap', flexDirection: 'column', alignItems: 'center', justifyContent: 'center', textAlign: 'center', minHeight: '100vh'}}>
      <Typography variant="h5" component="h5">
        ElevenLabs Tutorial: Create stories with Voice AI from ElevenLabs
      </Typography>
        <Box sx={{ marginTop: '32px', width: '600px' }}>
          <form
              onSubmit={handleSubmit}>
              <Textarea 
                sx={{ width: '100%' }}
                onChange={handleQueryChange}
                minRows={2} 
                maxRows={4} 
                placeholder="Type anything…" />
              <Button 
                disabled={loading || query === ''}
                type='submit'
                sx={{ marginTop: '16px' }}
                loading={loading}>
                  <Send />
              </Button>
          </form>
        </Box>
        {story && (
          <Box sx={{ marginTop: '32px', width: '600px' }}>
            <Textarea 
              sx={{ width: '100%' }}
              value={story}/>
              <Button
                loading={loading}
                sx={{ marginTop: '16px' }}
                onClick={audio ? play : generateAudio}>
                <HeadphonesOutlined />
              </Button>
          </Box>
        )}
    </Box>
  );

Create new folder audios in src folder. We will save all the generated voiceovers in this folder.

mkdir src/audios

Run the app

Let's run the app and see how it works.

npm start

Open your browser and go to http://localhost:3000/. You will see the app running.

FastAPI voice
FastAPI voice

Let's try to generate a story. Generate a short story about cat and kittens..

FastAPI voice
FastAPI voice

Cool! We got a story. Let's go through it.

FastAPI voice
FastAPI voice
FastAPI voice
FastAPI voice

Perfect! Let's listen to the audio of this story by clicking on the HeadphonesOutlined icon.

Conclusion

I hope this tutorial provided clear and detailed guidance, accompanied by few screenshots, to ensure a seamless setup process. By the end of this tutorial, you should have a working app that can generate stories and voiceovers. This is amazing! Today, we learned a lot of cool technologies and tools.

Thank you for following along with this tutorial.

Discover tutorials with similar technologies

Upcoming AI Hackathons and Events